# LeetCode 785. Is Graph Bipartite?

## Description

There is an undirected graph with `n` nodes, where each node is numbered between `0` and `n - 1`. You are given a 2D array `graph`, where `graph[u]` is an array of nodes that node `u` is adjacent to. More formally, for each `v` in `graph[u]`, there is an undirected edge between node `u` and node `v`. The graph has the following properties:

• There are no self-edges (`graph[u]` does not contain `u`).
• There are no parallel edges (`graph[u]` does not contain duplicate values).
• If `v` is in `graph[u]`, then `u` is in `graph[v]` (the graph is undirected).
• The graph may not be connected, meaning there may be two nodes `u` and `v` such that there is no path between them.

A graph is bipartite if the nodes can be partitioned into two independent sets `A` and `B` such that every edge in the graph connects a node in set `A` and a node in set `B`.

Return `true` if and only if it is bipartite.

Example 1:

```Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
Output: false
Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.```

Example 2:

```Input: graph = [[1,3],[0,2],[1,3],[0,2]]
Output: true
Explanation: We can partition the nodes into two sets: {0, 2} and {1, 3}.```

Constraints:

• `graph.length == n`
• `1 <= n <= 100`
• `0 <= graph[u].length < n`
• `0 <= graph[u][i] <= n - 1`
• `graph[u]` does not contain `u`.
• All the values of `graph[u]` are unique.
• If `graph[u]` contains `v`, then `graph[v]` contains `u`.

## Explanation

We can use the coloring approach with either breadth-first search or depth-first search, to see if nodes can be divided into half.

## Python Solution

``````class Solution:
def isBipartite(self, graph: List[List[int]]) -> bool:

visited = set()
colors = {}

for i in range(len(graph)):
if i in visited:
continue

queue = []
queue.append(i)
colors[i] = 0

while queue:
node = queue.pop(0)

for neighbor in graph[node]:
if neighbor not in colors:
colors[neighbor] = 1 if colors[node] == 0 else 0
queue.append(neighbor)