LeetCode 295. Find Median from Data Stream

Description

https://leetcode.com/problems/find-median-from-data-stream/

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.

  • For example, for arr = [2,3,4], the median is 3.
  • For example, for arr = [2,3], the median is (2 + 3) / 2 = 2.5.

Implement the MedianFinder class:

  • MedianFinder() initializes the MedianFinder object.
  • void addNum(int num) adds the integer num from the data stream to the data structure.
  • double findMedian() returns the median of all elements so far. Answers within 10-5 of the actual answer will be accepted.

Example 1:

Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output

[null, null, null, 1.5, null, 2.0]

Explanation MedianFinder medianFinder = new MedianFinder(); medianFinder.addNum(1); // arr = [1] medianFinder.addNum(2); // arr = [1, 2] medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2) medianFinder.addNum(3); // arr[1, 2, 3] medianFinder.findMedian(); // return 2.0

Constraints:

  • -105 <= num <= 105
  • There will be at least one element in the data structure before calling findMedian.
  • At most 5 * 104 calls will be made to addNum and findMedian.

Follow up:

  • If all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?
  • If 99% of all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?

Explanation

Sort the array to keep elements in ascending order. Base on the size of array to find the median.

Python Solution

class MedianFinder:

    def __init__(self):
        """
        initialize your data structure here.
        """
        self.nums = []

    def addNum(self, num: int) -> None:
        heapq.heappush(self.nums, num)

    def findMedian(self) -> float:
        self.nums = sorted(self.nums)
        size = len(self.nums)
        
        if size % 2 != 0:           
            n = size // 2
            return self.nums[n]
        else:
            n1 = self.nums[size // 2 - 1]
            n2 = self.nums[size // 2]
            
            print (n1, n2)
            return (n1 + n2) / 2

# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
  • Time Complexity: O(N).
  • Space Complexity: O(N).

Leave a Reply

Your email address will not be published. Required fields are marked *